/ Pytorch  

pytorch常用代码段

转载自 [深度学习框架]PyTorch常用代码段

1. 基本配置

导入包和版本查询

1
2
3
4
5
6
7
import torch
import torch.nn as nn
import torchvision
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
print(torch.cuda.get_device_name(0))

可复现性 - 随机种子

在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。

1
2
3
4
5
6
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

显卡设置

如果只需要一张显卡

1
2
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

如果需要指定多张显卡,比如0,1号显卡。

1
2
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

也可以在命令行运行代码时设置显卡:

1
CUDA_VISIBLE_DEVICES=0,1 python train.py

清除显存

1
torch.cuda.empty_cache()

也可以使用在命令行重置GPU的指令

1
nvidia-smi --gpu-reset -i [gpu_id]

2. 张量(Tensor)处理

张量的数据类型

PyTorch有9种CPU张量类型和9种GPU张量类型。

张量基本信息

1
2
3
4
tensor = torch.randn(3,4,5)
print(tensor.type()) # 数据类型
print(tensor.size()) # 张量的shape,是个元组
print(tensor.dim()) # 维度的数量

命名张量

张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# 在PyTorch 1.3之前,需要使用注释
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)

# PyTorch 1.3之后
NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C')
images.select('C', index=0)
# 也可以这么设置
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
# 使用align_to可以对维度方便地排序
tensor = tensor.align_to('N', 'C', 'H', 'W')

数据类型转换

1
2
3
4
5
6
7
8
# 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor
torch.set_default_tensor_type(torch.FloatTensor)

# 类型转换
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor与np.ndarray转换

除了CharTensor,其他所有CPU上的张量都支持转换为numpy格式然后再转换回来。

1
2
3
ndarray = tensor.cpu().numpy()
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stri

Torch.tensor与PIL.Image转换

1
2
3
4
5
6
7
8
9
# pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化
# torch.Tensor -> PIL.Image
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way

# PIL.Image -> torch.Tensor
path = r'./figure.jpg'
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way

np.ndarray与PIL.Image的转换

1
2
3
image = PIL.Image.fromarray(ndarray.astype(np.uint8))

ndarray = np.asarray(PIL.Image.open(path))

从只包含一个元素的张量中提取值

1
value = torch.rand(1).item()

张量形变

1
2
3
4
5
# 在将卷积层输入全连接层的情况下通常需要对张量做形变处理,
# 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。
tensor = torch.rand(2,3,4)
shape = (6, 4)
tensor = torch.reshape(tensor, shape)

打乱顺序

1
tensor = tensor[torch.randperm(tensor.size(0))]  # 打乱第一个维度

水平翻转

1
2
3
# pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现
# 假设张量的维度为[N, D, H, W].
tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]

复制张量

1
2
3
4
# Operation                 |  New/Shared memory | Still in computation graph |
tensor.clone() # | New | Yes |
tensor.detach() # | Shared | No |
tensor.detach.clone()() # | New | No |

张量拼接

1
2
3
4
5
6
7
'''
注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,
而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,
而torch.stack的结果是3x10x5的张量。
'''
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

将整数标签转为one-hot编码

1
2
3
4
5
6
# pytorch的标记默认从0开始
tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

得到非零元素

1
2
3
4
torch.nonzero(tensor)               # index of non-zero elements
torch.nonzero(tensor==0) # index of zero elements
torch.nonzero(tensor).size(0) # number of non-zero elements
torch.nonzero(tensor == 0).size(0) # number of zero elements

判断两个张量相等

1
2
torch.allclose(tensor1, tensor2)  # float tensor
torch.equal(tensor1, tensor2) # int tensor

张量扩展

1
2
3
# Expand tensor of shape 64*512 to shape 64*512*7*7.
tensor = torch.rand(64,512)
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

矩阵乘法

1
2
3
4
5
6
7
8
# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
result = torch.mm(tensor1, tensor2)

# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
result = torch.bmm(tensor1, tensor2)

# Element-wise multiplication.
result = tensor1 * tensor2

计算两组数据之间的两两欧式距离

利用broadcast机制

1
dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))

3. 模型定义和操作

一个简单两层卷积网络的示例

1
2


1
2


1
2


1
2


1
2


1
2


1
2


1
2


1
2


1
2


1
2


1
2


1
2


1
2